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1.0 Introduction 

This document serves to outline the overall architectural design as well as the design of each 
major module in our project in order to deliver a complete package and introduce the reader to 
the necessity and importance of the project.  This document is essentially a blueprint for the final 
product. 
 
Data Menders is a capstone team aimed to help facilitate the reduction of false alarms in 
intensive care units (ICUs) through the analysis and interpretation of signals to determine the 
true nature of an alarm.  In a typical ICU, nurses are constantly scrambling to tend to fires that 
may not exist. Many of these non existent fires are false or meaningless alarms.  A false alarm is 
an alarm that is triggered to medical staff about a patient that is interpreted as a danger when it is 
really benign.  These false alarms can create “alarm fatigue” in medical staff since they are 
forced to respond to numerous alarms throughout the day.  In other words, false alarms create a 
“cry wolf effect” with medical staff, this is to say that nurses become desensitized to alarms after 
responding to numerous alarms and thus they stop responding in the correct way.  False alarms 
and the resulting alarm fatigue can result in interruption of patient care, depressed immune 
systems through sleep deprivation and even death.  In fact, the Emergency Care Research 
Institute placed false alarms at number one on their list of the Top 10 Health Technology 
Hazards for the years 2012, 2013, and 2015.  To put this quantitatively, from 2005 to 2008, the 
FDA database received 566 reports of patient deaths related to alarms of monitoring devices. 
The idea for the project comes through real life experiences pertaining to our client and sponsor 
and an obviously glaring weakness in the healthcare field.  
 
Our client and sponsor, Dr. Fatemeh Afghah, is an assistant professor in the School of 
Informatics, Computing, and Cyber Systems at Northern Arizona University.  In addition to 
teaching, h​er research areas include: wireless communications, game theoretical optimization 
and biomedical signal processing.  Her current research focuses on developing predictive 
modeling techniques using game theory and graph theory to optimize the performance of current 
medical diagnosis methods.  Her expertise with biomedical signal processing and medical 
diagnosis methods are invaluable to our project’s success. 
 
Automated monitoring has revolutionized care in modern ICU units around the world because it 
allows continuous monitoring of patient vital signs such as: blood pressure, pulse and ECG 
signals.  These automated monitoring devices watch these vital signs and alert medical staff if 
there is an anomaly by way of a medical alarm.  This is great news for medical staff as they can 
become more productive by being able to work on other tasks, however, for all the good 
automated monitoring does for ICU units, it’s also prone to false alarms.  False alarms here occur 

2 



 

from any number of things: sensors become loose, muscles have spasms, monitors are faulty, 
incorrect placement of sensors by staff, etc.  
 

2.0 Implementation Overview 
As you can imagine, false alarms have been addressed by medical professionals and engineers, 
and attempts have been made to reduce them.  However, the majority of attempts so far have 
been focused on improving hardware such as improving monitors or increasing the accuracy of 
sensors.  The problem with this approach is that, as mentioned earlier, people are imperfect.  Our 
project focuses on the much more realistic idea that regardless of the sophistication of the 
hardware, patients will still move around and staff won’t always hook everything up correctly 
and thus false alarms will be triggered. This is where a software package would come in handy to 
analyze multiple signals from a patient and determine what kind of care is called for. 
 
Our software packages will alleviate the stress put on ICU medical staff and patients and as a 
result may aid in saving lives  In order to accomplish these goals there are several things that 
need to be done, we need to: record signal inputs, put the signals through pre-processing, extract 
features from the pre-processed signals, select the features that are more useful in a given 
situation, run those select features through machine learning algorithms, create a user interface 
front end and create a user manual for easy operation of the software (an in depth explanation of 
each of these are given in section 4 of this document).  In order to achieve this, we are using the 
MATLAB programming language with and without the library WFDB for pre-processing and 
WEKA for machine learning. 
 
The WFDB MATLAB library gives us a greater ability to manipulate patient signals and extract 
important features. It also gives us a code framework for which to build our programs onto 
without having to recreate the basic tools. WEKA is a machine learning framework that analyzes 
patterns in sets of data to predict solutions to new sets of data. 
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3.0 Architectural Overview 

 
 
 

 

  

Our project will consist of four critical parts. Main, this will drive the program.  Signal 
Processing, this will take in signal data and process it using one or multiple techniques.  Feature 
Extraction, this will obtain the important points of data from the processed signal.  Feature 
Selection is the ability to learn what Features are more useful.  Finally, Write to CSV, this will 
take data from signal processing and feature extraction and write it to CSV files. 
Main is the driver of the whole program.  Main does interact with the user to see what they want, 
and will also need an input file passed into it.  This input file will be called config.txt, the 
contents of this file will have names of other files that are CSVs.  Within these files will be 
signal data.  This is so that Main can do batch file processing. 
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The Signal Processing part has multiple parts connected to it.  This is because some signal 
processing algorithms are more complex than others, thus needing their own files to make the 
code cleaner.  Once the passed in signal has been processed Signal Processing will send it back 
to Main.  The algorithms used in Signal Processing are as follows: Discrete Fourier Transform 
(DFT), Short Time Fourier Transform (STFT), Discrete Wavelet Transform (DWT), Discrete 
Dual Tree Wavelet Transform (DTW), Taut String, and Heart Rate Variability (HRV).  These 
algorithms will be discussed in more depth in other sections of this paper. 
 
Feature Extraction can still grow a little.  With this part of the project, Feature Extraction will 
analyze the code that Main got from Signal Processing.  Then once finished, this will be sent 
back in to Main.  The way that Feature Extraction can grow is by more complex methods of 
feature extraction, much like Signal Processing. 
 
Another important part to this project, but only talked about briefly, is Feature Selection.  This is 
when the data from Feature Extraction is analyzed and is able to tell what features from a signal 
are more important for false alarm detection.  By doing this, the features that are more important 
will be extracted and the less important ones will not be.  This will be an integrated process, 
meaning it will be done within the overall program.  This will be done by using a tool called 
Weka.  Weka uses data mining techniques to find the important feature that will be used to 
determine if an alarm is false or not. 
 
Write to CSV will be responsible for converting the given data into a CSVs file type.  Then 
given what kind of data it is, the CSV will be placed in a folder.  The folder will be named after 
the kind of data it is. Because there is Signal Process data, and there is Feature Extraction data, 
there will be a folder Signal Process and a Feature Extraction. 
 
The File Structure will hold data that Main will process, meaning Main will make CSVs for each 
kind of data that is made throughout the program.  The File structure will organize the data, so 
when accessing, it will be nice and easy to do so. The data saved within the File Structure will be 
used to help predict false or true alarms with a given patient 
 
With the final product, there will also be a user interface interacting with Main itself.  The goal 
for this interface is to allow the use to have a nice time interacting with the program. 
 
The expected flow of this will be to pass in a config.txt file in to Main.  Within this config.txt 
file, there will be a list of CSV file names where each file contains signal data.  Once Main 
knows all of the files that need to be processed, Main then asks the User what they want done in 
signal processing.  Once the User has answered the questions, Main will then call the respective 
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functions in Signal Processing.  Signal Processing will then send back the results it got from 
processing the given signal, and in Main. Main will make a CSV for each kind of signal 
processed in this way for each signal.  Once all of the Signal Processing is done, Main will then 
call Feature Extraction for all of the processed signals.  At that point, once Feature Extraction is 
finished analyzing the signals and has send it back to Main, Main will write that data into CSVs 
like it does for Signal Processing.  Once all of the names within the config.txt file have been 
processed, then the program has finished running.  This is the normal flow of the program. 
 

4.0 Module and Interface Description 

4.1 Pre Processing 

The first component a patient's data will encounter is the pre-processing module of the program. 
Here transformations will be applied and a patient’s ECG signal will be broken down into points 
of interest such as the R peaks of the ECG.  These pre-processing techniques only serve to break 
the signal into as many subdomains as possible.  This is because one processing technique may 
be able to offer more insight into the signatures of a certain heart condition than others. 
 

4.1.1 Removing Artifacts 

In an ICU environment there are many sources of noise that make their way into an ECG signal. 
The problem with removing some of these sources of noise is it’s hard to remove only the noise. 
Some sources of noise have very definitive frequencies and could be easily removed.  The 
problem is however, there may be useful signal data that shares the same frequency as the noise 
so removing the noise also causes a loss in data.  For this reason very conservative noise 
reduction if any is used.  This being said, there is one source of noise that is easily removed. 
Baseline wander is the way an ECG signal may fluctuate throughout time causing it to take on a 
wavy structure.  Since the baseline wander may only contribute 1 or 2 full waves throughout the 
course of a 30 minute ECG signal, we can remove this with a great deal of confidence that we 
won’t remove useful data.  
 
The function ‘remove_BW’ is a function that removes this baseline wander so later 
transformation and feature extraction is working with more accurate data.  The function takes in 
an ECG signal and the sampling frequency of the signal.  The signal is run through the discrete 
fourier transform to get all the frequencies that make up the ECG signal.  Now, utilizing the fact 
that baseline wander contributes such a low frequency to the signal, we can safely remove all 
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frequencies under .5 Hz and in some cases 1 Hz.  After this is done, the inverse fourier transform 
is used to get the ECG signal back and the new signal without the baseline wander is returned.  

4.1.2 SignalTransformations 

One of the first methods that will get called is the one which takes an ECG signal and performs 
several signal transformations to obtain different ways of representing the same data.  The signal 
transformations include Discrete Fourier Transform (DFT), Discrete Wavelet Transform (DWT), 
Discrete Dual Tree Wavelet Transform (DTW), Taut String, and Short Time Fourier Transform 
(STFT).  Each of these transforms offers something different that may prove valuable to future 
pieces of the program.  For example, DFT is great at showing what frequencies are present in a a 
signal without regard to where they occured.  DWT builds on this and offers the same insight 
into the frequencies present in a signal but also gives the time at which the signals occurred. 
DTW is very similar to DWT except it effectively has two times the information as DWT as 
alluded to in the name of the transformations.  Taut String is a smoothing function which, 
depending on an epsilon value, will take a signal and remove variability in the signal eventually 
leaving only the most radical changes.  STFT uses the same underlying frequency analysis as 
DFT but instead of applying it to the entire signal, STFT breaks the signal into windows and 
performs a fourier transform on the windows.  This gives greater detail into when the frequency 
occurred but only within the limits of the window. 
 
This function is called with a patient's ECG signal as the only input and after all the signal 
transformations have been applied a variable length output array is returned.  Each 
transformation returns its own structure of data and to be sure the calling function has every bit 
of the data, the return values are vastly different in the information they carry.  For example, 
DFT only returns a 1D matrix corresponding to the amplitude of some frequency.  This differs 
from the output of DTW which is a struct containing the levels of the wavelet transformation that 
were used as well the actual data from these levels.  It is up to the calling function to decide 
which information it deems relevant from the returned array. 

4.1.3 Heart Rate Variability (HRV) 

Heart Rate Variability (HRV) is useful to us for analyzing a patient’s heart rate over a period of 
time for anomalies. HRV is a signal that is generated from an ECG signal and provides many 
more insights into the patient's heart than a pure ECG does. For example, using an HRV signal 
you are able to calculate a patient's heart rate as well as the patients heart rate standard deviation, 
average, domain, and many more.  
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Extracting an HRV signal from a regular ECG signal is done by obtaining QRS peaks from the 
ECG signal and taking the differences between them to obtain an interval.The inverse of these 
obtained intervals make up the new HRV signal. 
 

4.2 Feature Extraction 

After the signal has been broken down into different signals using data transformations and HRV 
has identified the attributes of all the heart rhythms, features about the new data have to be 
identified in order to attempt to find trends among both healthy patients and unhealthy ones.  If 
trends are only identified from one of these groups, it will not be possible to know which 
attributes of an unhealthy persons ECG signal caused it to be classified as unhealthy.  
 
There are different kinds of features that can be taken from a set of transformations.  Statistical 
features such as mean, median, standard deviation, and harmonic mean are some that can be 
extracted from just about any signal.  The extractFeatures function takes in a variable number of 
inputs depending on the use.  Of course it needs an input signal but it can also take in 
information to save the features in a file such as a flag to say if output to file is desired, a file 
name, and the patient name since there is usually multiple transformations for any given patient 
and their condition.  Whether or not the information gets saved to file, it will always get returned 
to the calling function.  The order of the features can be found in a cell array that is also returned. 

4.2.1 Extracting HRV Features 

The HRV signals our package generates requires a different set of features be extracted.  In 
addition to the statistical features mentioned above, we want to get distances between each peak 
rather it be R1-R2, P1-P2, Q1-Q2, etc.  We also want to get other simple arithmetic features of 
these peaks such as R1/R2, P1*P2, etc. and more advanced features like (P1-P2) / (Q1-Q2) and 
power functions.  This information allows us to analyze the patterns in signals of healthy and 
unhealthy patients to determine what specific point in a given feature causes problems.  Overall, 
we extract 700 features from the HRV signals, not all are significant.  Each patient’s HRV 
features are copied as its own row in a .csv file where they can be easily compared to each other 
and analyzed.  
 

4.3 Feature Selection 

Once a signal has gone through feature extraction there are hundreds of features from statistical 
features to unique HRV features.  These features are useful information but may not all be 
needed when trying to find the set of features that gives the highest level of accuracy for a given 
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condition.  To do this, the features that come out of statistical analysis from signal 
transformations as well as the statistical and peak feature from the HRV are analyzed to 
determine which features are best used at detecting certain heart conditions.  
 
This can be done with the Weka API.  Since the features that any given heart condition are used 
for multitudes of of patients and rarely change, features can be coded into the alarm 
classification.  To make sure the set of features are as accurate as possible, a training set is used 
consisting of healthy patients to get a baseline of what features expect to look like as well as 
unhealthy patients to give data on the specific features where abnormalities are seen.  

4.4 Alarm Classification 

 
The features that are taken from a patient's ECG signal are originally compared to healthy 
patients data to look for abnormalities meaning a heart condition.  The features that are used to 
look for any number of conditions are continuously monitored as new ECG data comes in.  A 
function called detectConditions will use selected features from previous steps to compare to an 
aggregate of known features that signify a heart condition.  If the program determines that the 
patient's ECG features are outside a certain threshold, it determines that an alarm should sound.  
 
However, as a patient spends time in an ICU, features that once were determined to cause a false 
alarm can be saved so the next time the once abnormal feature values are seen, an alarm may not 
need to be triggered. This is aided through two functions.  The first is called isAlarmForPatient 
and deals with determining whether or not a set of features should sound an alarm for a patient. 
The function first references a database of features and known conditions that those features 
correspond to.  If an alarm condition is determined and there is no previous patient data, an alarm 
will be triggered.  But, if there is patient data it will then be referenced to check if the set of 
features have been previously marked as normal for the patient.  To do this the function takes in 
an array of features that are being examined, a reference to the generic patient database, and a 
possible reference to the patient's specific database.  The function will do its evaluations of the 
the patient databases and its output will be an alarm result. 
 
If no alarm has been determined, the next ECG rhythm will be analyzed, but if an alarm goes off 
there is the option for it to be classified as a false alarm.  In this case, input from a nurse will 
cause a call to the second main function savePatientData.  As input, this function takes in the 
features that caused an alarm to be triggered, the alarm that was triggered, and a reference to the 
patient's existing specific database.  The call to this function adds or updates the database of the 
patients data which will serve as “normal” for a patient.  To ensure there is record of the patient's 
unique “normal” feature values, each call to this function will update a file that will maintain a 
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storage copy.  To mitigate the risk of a few outlying features that may be present for a single 
alarm but not truly indicative of the false alarm, the saved data about one specific alarm will 
build up to the point where only features that can show a strong connection to a false alarm are 
given prominence. 
 

4.5 Utility Functions 

There are numerous functions that don’t fall under any particular category due to their use 
throughout the program.  
 
 
 

5.0 Implementation Plan 

 
0This Gantt chart shows the order on how parts of this project will be done.   Something to keep 
in mind is that each part has a substantial amount of work, thus this is a high level overview of 
how things will be completed in time.  
 
The first part will be Signal Processing.  All of the logic to process signals and to send their data 
back to who call them will be implemented here.  There are six kinds of signal processing 
techniques that will be used, which are: Discrete Fourier Transform (DFT), Short Time Fourier 
Transform (STFT), Discrete Wavelet Transform (DWT), Discrete Dual Tree Wavelet Transform 
(DTW), Taut String, and Heart Rate Variability (HRV).  Throughout obtaining the different 
signals for Signal Processing, they will be tested one by one to insure data integrity.  Once that is 
finished, the other parts of the project can start. 
 
The next section that can start, after Signal processing is finished, is Feature Extraction. The 
Feature Extraction is needed to be finished for the Feature Selection part of this project, because 
Feature Selection cannot be started without it.  The Feature Extraction will also test that the 
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signal processing part was done right because the features extracted from the processed signal 
will either be good or bad.  This is tested by our mentor. 
 
With the GUI part of this project it can start once Signal processing is finished.  This is because 
the GUI can call the different algorithms for Signal Processing, and save that data in the same 
directory of the program for now.  As other parts are finished, more things will be added to the 
GUI. 
The Feature Selection will be able to start after the Feature Extraction ends.  With Feature 
Extraction’s data, it can be determined what data points are more important and needed for 
predicting false alarms, thus this part is important.  Once this part is finished, Feature Extraction 
will be updated so that only the important features are obtained. 
 
Once all of the data components are being finished, the Wire to CSV/File Stricter will begin. 
This is so that all of the data can be organized for use. 
 
Also, the section Anything Else will be going through the majority of the project to add things 
here and there when needed. 
 

6.0 Conclusion 

 
To conclude this document, the false alarms that the ICU have to deal with are costing people 
their lives and stressing people out.  The goal of this project is to help reduce that.  Since false 
alarms can cause nurses to get a “cry wolf effect”, the plan is to reduce that by analyzing the 
inputs of the devices that the patients are connected to.​ ​By having a device look at all of the 
inputs, a more accurate alarm can be set.  This document talked about how the software package 
will come together to accomplish this goal.  The parts of this package seem simple to complete, 
but due to the nature of this project, each part will be looked into appropriately for correctness 
and neatness of the code.  This ensures correct outcomes of false alarms.  The organization of 
this project will help further research for others in similar areas because of the GUI.  In the end, 
the goal of this project is to help reduce false alarms in the ICU. By doing so, we can reduce the 
stress of the ICU staff and help save lives.  
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